Quiz , 50 poinbuktikan bahwa 999! < 500^999 (catatan n! = 1 × 2 × 3 × 4 × … × n) ?no ngasalno s November 30, 2021 by Rylee Quiz , 50 poin buktikan bahwa 999! < 500^999 (catatan n! = 1 × 2 × 3 × 4 × … × n) ? no ngasalno spampakai cara
dengan rataan geometri : [tex] \sqrt[n]{a1.a2.a3….an – 1.an} \leqslant \: \frac{a1 + a2 + a3 + … + an – 1 + an}{n} [/tex] tanda sama dengan berlaku jika a1 = a2 = a3 = …. = an-1 = an , maka : [tex] \sqrt[999]{1.2.3.4….999} < \frac{1 + 2 + 3 + … + 998 + 999}{999} [/tex] [tex] \sqrt[999]{999!} < \frac{1}{999} \frac{999}{2} \: (1 + 999)[/tex] [tex] \sqrt[999]{999!} < 500[/tex] [tex]999! < {500}^{999} [/tex] [tex]jadi \: terbukti \: bahwa \: 999! < {500}^{999} [/tex] Reply
dengan rataan geometri :
[tex] \sqrt[n]{a1.a2.a3….an – 1.an} \leqslant \: \frac{a1 + a2 + a3 + … + an – 1 + an}{n} [/tex]
tanda sama dengan berlaku jika a1 = a2 = a3 = …. = an-1 = an , maka :
[tex] \sqrt[999]{1.2.3.4….999} < \frac{1 + 2 + 3 + … + 998 + 999}{999} [/tex]
[tex] \sqrt[999]{999!} < \frac{1}{999} \frac{999}{2} \: (1 + 999)[/tex]
[tex] \sqrt[999]{999!} < 500[/tex]
[tex]999! < {500}^{999} [/tex]
[tex]jadi \: terbukti \: bahwa \: 999! < {500}^{999} [/tex]